Overall Confidence Rating: H

Site: Tomato (Page 1)

Background: During 1994-96, there was a mean of 472,000 harvested acres (72% processed¹⁸, 28% fresh). CA, FL, OH, IN, and NY comprised 90% of the acreage⁴. Of the 874,000 acres treated, 17% were treated with organophosphates. Organophosphates were applied approximately 3.1 times per acre per year during the period⁵. Fresh tomatoes were treated much more than processed. CA produced about 95% of the processed and FL produced most of the fresh. The following insecticides have usage, registration, and tolerances¹² for tomatoes.

Organophosphate	% Tre	eated ¹	# Appl	ications	Rate (lb	AI/A)	PHI (days)	
Pesticides	Max	Avg	Max ²	Avg ¹	Max ²	Avg ¹	Min ²	Avg
azinphos-methyl ^{1, 5, 10, 17}	25	15	411	1.510	1.5	0.6^{10}	0	7 ^{3a,c} - 14 ^{3c,e,u}
methamidophos ^{1, 5, 10, 17}	Process 11 Fresh 90	Process 9 Fresh 58	5	Process 1.1 Fresh 4.2	1	Process 0.9 Fresh 0.8	7	14 ^{3a}
dimethoate ^{1, 5, 10, 17}	10	9	2^{3}	1.410	0.5	0.5^{10}	7	7 ^{3a,c,e}
malathion ^{1, 5, 10, 17}	9	4	Not specified on labels	2.5	21.6	0.2	1	1 ^{3a}
diazinon ^{1, 5, 10, 17}	7	4	5	2	11.5	0.4	1	1 ^{3c} -60 ^{3a,t}
chlorpyrifos ^{1, 5, 10, 17}	4	2	8	1.4	1	Not Availab le	14	Not Availab le
methyl parathion ^{1,5,10}	3	1	Not specified on labels	1 ^{3d}	1.5	1 ^{7e}	5	15 ^{3a}
disulfoton ^{1, 5, 17}	0.1^{3a}	0	1	1	3	1.3	30	90^{3a}

Confidence Rating: H= hi

H= high confidence = data from several confirming sources; confirmed by personal experience

M = medium confidence = data from only a few sources; may be some conflicting or unconfirmed info.

L = low confidence = data from only one unconfirmed source

Organophosphate Target Pests for Tomatoes ⁵									
Major	aphids (potato, green peach) ^{6,7a} , tomato pinworm; wireworms; whiteflies (silverleaf ^{7a}); leafminer (<i>Liriomyza</i> ^{7a})								
Moderate	flea beetles; cutworm; symphylans; beet leafhopper ^{7a} ; tomato fruitworm; beet armyworm; Colorado potato beetle; fruit flies (<i>Drosophila</i> ^{7a}); crickets								
Minor	thrips; stink bugs; lygus bugs								

Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor =<5% of all OP usage on pest

Note: Fonofos, oxydemeton-methyl, dicrotophos, naled¹⁹, and acephate have usage but not tolerances^{5, 12}.

Sources: (Crop and Pest Summaries)

- ¹QUA. 1993-1997. EPA Quantitative Usage Analysis. Methamidophos is the only insecticide for which average numbers of applications and lbs per year are available for fresh and processed; therefore, weighted averages are given for fresh and processed.
- ²LUIS. 1998. Label Use Information System, version 5.0, EPA.
- ^{3a}QUA+, Quantitative Usage Analysis, EPA. California Processing Tomato Industry FQPA Response. 1997. Diazinon and disulfoton were applied at plant.
- ^{3b}QUA+, Quantitative Usage Analysis, EPA. California Tomato Research Institute report to NCFAP. Insecticide Use on California Tomatoes. 1995. Wireworms, potato aphids, and stink bugs listed as major pests in processed tomatoes.
- ^{3c}QUA+, Quantitative Usage Analysis, EPA. Pesticide Use and Usage in Michigan 1997. 1998.
- ^{3e}QUA+, Quantitative Usage Analysis, EPA. Rutgers University, NJ. 1998.
- ^{3f}QUA+, Quantitative Usage Analysis, EPA. Valent. Methamidophos. 1998.
- ^{3g}QUA+, Quantitative Usage Analysis, EPA. Atochem. Methyl Parathion. 1998.
- ^{3t}MI had ca. 2% of acreage and CA 98%⁴, so weighted average PHI is 59.
- ^{3u}MI 2%, and CA 98% of the acreage⁴, so weighted average PHI is 13.
- ⁴Agricultural Statistics. USDA. 1998.
- ⁵Proprietary EPA Quantitative Pesticide Usage. 1997.
- ⁶ Proprietary EPA Quantitative Pesticide Usage. 1997.
- ^{7a}University of California, Pest Management Guidelines, Tomato. 1997.
- ^{7b}University of Florida, 1996 Florida Insect Management Guide, Insect Management in Tomatoes. 1996.
- ^{7c}Ohio Vegetable Production Guide, Tomatoes: Fresh Market and Processing, Insect Control. 1997.
- ^{7d}Purdue University [IN], Management of Insect Pests on Fresh Market Tomatoes. 1993.
- ⁷eCornell [NY] Cooperative Extension, Pest Management Recommendations, Control of Insect Pests of Tomatoes. 1998.
- ⁸ Proprietary EPA Quantitative Pesticide Usage. 1996.
- ¹⁰Agricultural Chemical Usage Vegetables 1996. USDA National Agricultural Statistics Service. 1997.
- ¹¹Insect Control Guide. Meister Publishing. 1997.
- ¹²Tolerance Index System. EPA. 1998.
- ¹³Arthropod Management Tests. Ent. Soc. America. 1997.
- ¹⁴Arthropod Management Tests. Ent. Soc. America. 1996.
- ¹⁵Arthropod Management Tests. Ent. Soc. America. 1994.
- ¹⁶EPA Section 18 records. 1995-1998.
- ¹⁷US Geological Survey, Pesticide National Synthesis Project, Tomatoes for 1997. 1998.
- ¹⁸Balling, S., Processed Tomato Foundation, 925-944-7377, stated in telephone communication that up to 95% of processed tomatoes produced in CA. 7/8/98.
- ¹⁹FR 63:3057-3060. WWW.cas.psu.edu/docs/.
- ²⁰OP Tolerance Assessment Matrix Populating Instructions & Data Dictionary, EPA, 1998.
- ²¹Rivara, C. California Processing Tomato Industry. Comments on draft. July 17, 1998.
- ²²University of California. California Pesticide Use Summaries, Tomato, Tomato (processing/canning) for 1994. 1998.
- ²³California Dept. Pesticide Regulation and Univ. California Statewide IPM Program. Pest Management Survey Database. Tomato. 1996
- ²⁴Agricultural Information Services, Ltd. 1997. World Pest Infestation Database. Tomato, Georgia, North Carolina, California.
- ²⁵www.nass.usda.gov/oh, ny, in. 1997 vegetable production stats. 1998.

Date: 8/3/98

Region: California

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints/Notes on Alternatives
Timing: Seedli	Timing: Seedling								
aphid (green	dimethoate ⁵	⊚ ^{7a}	med ⁵		О	imidacloprid ⁵		high ⁵	Imidacloprid at plant recommended for whitefly ^{7a} .
peach) ^{7a} (major) ⁵	disulfoton ^{3a}		lo ^{3a}						
• •	diazinon ⁵		high ⁵						
	malathion ⁵	O^{7a}	med ⁵						
wireworms (major) ^{3a,5}	diazinon ^{3a,5}	● ²³ -⊚ ^{3a}	high ⁵						Wireworms major ipm concern in processed production ^{3a} .
flea beetles	methamidophos ⁵		med ⁵	d ⁵	С	carbaryl ^{7a,3f}	● ²³ -⊚ ^{7a}	high 5	Carbaryl on mature fruit to remove flea beetles
(moderate) ^{7a,5}					СН	endosulfan ^{23,3f}			going for processing ^{3b}
					P	esfenvalerate ^{5,3f}		high 5	
symphylan (moderate) ⁵	diazinon ^{3a}	O ^{3a}							
	methamidophos ⁵		med ⁵		С	carbaryl ^{5,3f}		high 5	Methomyl plus pyrethroids used for knockdown ^{3b}
cutworm (moderate) ^{5,7a}					С	methomyl 5,3f	●5	med	
					P	lambda-cyhalothrin 5	●5	lo ⁵	

ADDITIONAL INFORMATION:

Note: Over 95% of seedlings are for processing to matoes. Analyzed pests make up $>\!\!95\%$ of OP usage.

Observations: There are no IGRs or biologicals registered. Pyriproxifen, buprofezin, and spinosad are in the pipeline currently through Sec. 18. Major pests drive OP usage; moderate and minor pests could become major if resurgence occurs. There are no alternatives for diazinon for the soil pests wireworms and symphylans.

SOURCES: See crop summary.

Date: 6/24/98

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest

Efficacy Rating: Excellent = \odot Good = \bigcirc Fair = \bullet

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Region: California

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Foliage/fruit									
aphid	disulfoton ⁵		low ⁵	5	P	permethrin ⁵		low ⁵	Dimethoate hard on beneficials and nontargets ²³
(potato) ^{7a}	dimethoate ^{3b,5}	⊚ ^{7a}	high ⁵		С	oxamyl ⁵	O^{7a}	med ⁵	Dimethoate only effective treatment for the pest ^{3b}
(major) ⁵	diazinon ⁵	● ^{7a}	low ⁵		О	imidacloprid ⁵	● ^{7a}	low ⁵	
	malathion ⁵	O^{7a}	med ⁵		О	insecticidal soap ⁵	O^{7a}	low ⁵	
	methamidophos ⁵		med ⁵		СН	endosulfan ^{5,3f}	O^{7a}	low ⁵	
	azinphos-methyl ⁵		med ⁵		В	rotenone ⁵		med 5	
	chlorpyrifos ⁵		low ⁵		С	carbaryl ^{5,3f}		low ⁵	
					P	esfenvalerate ^{5,3f}		low ⁵	
beet	methamidophos ⁵	● ^{3a}	high ⁵		С	carbaryl ^{7a}	⊚ ^{7a}		
leafhopper ^{7a} (moderate) ⁵	azinphos-methyl ⁵	● 3a	high ⁵		О	imidacloprid ⁵		low ⁵	
	dimethoate ⁵	• ⁵	high ⁵		Р	esfenvalerate⁵		low ⁵	

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⑤ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Region: California

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives	
Timing: Folia	ge/fruit									
stink bugs (minor) ³	methamidophos ⁵	⊚ ^{3b}	high ⁵		P	esfenvalerate ^{7a,3f}	O ^{7a}	med ⁵	Noted (sporadic but increasing ²⁴) IPM pest in CA; methamidophos only effective control for it ^{3b} .	
	dimethoate ^{7a}	O ^{7a} -⊚ ²⁴				carbaryl ^{7a,3f}		low ⁵	Esfenvalerate tank mixed with methomyl. ^{7a} Dimethoate & methamidophos hard on beneficials and nontargets and methamidophos undesirable	
					СН	endosulfan ^{7a,3f}	⊚ ^{7a,24}	low ⁵	residues ²³ Spinosad is effective methomyl alternative ¹³ .Imidacloprid good residual activity ²³	
					О	imidacloprid ⁷	● ^{7a}			
					О	insecticidal soap ⁷	● ^{7a}			
					C	methomyl ⁷	O^{7a}			
lygus bugs (minor) ⁵	dimethoate ⁵	O ^{7a}	high ⁵		С	methomyl ^{3f,5}		med ⁵	Spinosad is good methomyl alternative ¹³ Bimethoate hard on beneficials and nontargets ²³	
	methamidophos ⁵		med ⁵		P	bifenthrin ⁵		low ⁵	D	
					СН	endosulfan ^{7a,3f}	⊚ ^{7a}			
					Р	fenpropathrin ^{7a}	● ^{7a}			
leafminers, <i>Liriomyza</i> ^{7a}	methamidophos ⁵		med ⁵	15	О	abamectin ^{5,7a}	⊚ ^{7a}	med 5	Methamidophos hard on beneficials and nontargets and has undesirable residues ²³	
(moderate) ⁵	diazinon ⁵		high ⁵		C	oxamyl ^{5,7a}	\bigcirc ^{7a}	high ⁵	Natural biocontrol parasitoids vary in	
	dimethoate ⁵		high ⁵		P	esfenvalerate ^{7a}	O ^{7a}	low 5	effectiveness ²³ . Dimethoate hard on beneficials and nontargets ²³	

Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest

Efficacy Rating: Excellent = ⊕ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Region: California

Pest	Organophosphate	Efficacy	Mkt		Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives
Timing: Folia	Timing: Foliage/fruit								
tomato pinworm	azinphos-methyl ⁵		high ⁵		О	tredecen acetate pheromone ^{7a}	⊚ ⁷ a		Methomyl killed off leafminer biocontrol agents and increased populations of leafminer ¹³ ; induces
(moderate) ⁵	methamidophos ⁵		low ⁵		С	methomyl ^{7a}	● ²³⁻ ○ ^{7a}	med 5	secondary pests ²³
					P	esfenvalerate ^{7a}	O^{7a}	high ⁵	
					В	Bacillus thuringiensis ⁵		med ⁵	
					С	oxamyl ⁵		high ⁵	
tomato fruitworm	malathion ⁵		low ⁵		Р	esfenvalerate ⁵	⊚ ^{7a}	high ⁵	Esfenvalerate caused secondary outbreak mites, leafminers ^{7a} .
(moderate) ⁵			low ⁵		С	methomyl ⁵	O ⁷	med 5	Methomyl may induce secondary pests ²³
	methamidophos ⁵		low ⁵		О	Bacillus thuringiensis ⁵	● ²³⁻ ○ ^{7a}	high ⁵	Methamidophos hard on beneficials and nontargets and has undesirable residues ²³
					О	abamectin ⁵		low 5	
					С	carbaryl ⁵	O^{7a}	low 5	
					В	Trichogramma wasp egg biocontrol	●23		Carbaryl effective late season ^{7a} . Carbaryl hard on beneficials and nontargets ²³
					О	cryolite ⁵		low 5	concretions and nontargets
					О	insecticidal soap ⁵		low 5	Wasps for supression are very specific ^{7a}

 $Pest\ Importance:\ Major=20+\%\ of\ all\ OP\ usage\ on\ pest;\ Moderate=5-20\%\ of\ all\ OP\ usage\ on\ pest;$ Minor=<5% of\ all\ OP\ usage\ on\ pest

Efficacy Rating: Excellent = ⊚ Good = O Fair = ●

Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides

Region: California

Pest	Organophosphate	Efficacy	Mkt	Class	Alt. Pesticide List	Efficacy	Mkt	Constraints of Alternatives			
Timing: Folia	ge/fruit										
whitefly (green-	methamidophos ⁵		high ⁵	О	imidacloprid ⁵	⊚ ^{7a}	low ⁵	Tomato yellow leaf curl virus not yet in CA ^{7a} , when it is, preplant imidacloprid will likely have			
house and silverleaf) ^{7a} (moderate) ⁵	dimethoate ⁵		high ⁵	С	oxamyl ⁵	O^{7a}	low ⁵	major usage.			
,	diazinon ⁵		med ⁵	О	insecticidal soap ⁵		low ⁵				
				О	rotenone ⁵		low ⁵				
				Р	pyrethrin ⁵		low ⁵				

ADDITIONAL INFORMATION:

Note: Analyzed pests make up >95% of OP usage.

SOURCES: See crop summary.

Date: 6/24/98